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NONPARAMETRIC LIFE TEST SAMPLING PLAKRS

l., Introduction

Sampling plans for truncated life tests based on several parametric
families of distributiop functions have been proposed by Sobel and
Tischendorf (1959), Gupta and Groll (1961) and Gupta (19628). Thus,
we have the problem of which family to choose; i.e., exponential,
normal, lognarmal, gamma, etc. In meny cases it is cessumed that certain
nuisance parameters are known. Unleas considerable prior information is
available, the choice will necessarily be samewvhat arbitrary. We can
circumvent this problem by considering a class of distributions restricted
only by certain intuitive considerations. If the items in question wvear
out with age, then it is reasonable to assume that the failure rate
function is nondecreasing. For other items such as solid state electronic
devices, it seems reasonable to assume that the failure rate function
is nonincreasing. By using sharp bounds on such distributions, we
can obtain sampling plans which, although more conservative taan the
parametric plans, offer greater protection simre they are valid for a
much larger family of distributions.

It has been suggested by Zelen and Dannemiller (1959) that sampling
plans should be written in terms of percentiles. Such plans vere presented
by Gupta and Groll (1961) and Gupta (1962s)for the gamma, normal and log-
normal distributions. We present plans basel on percentiles under the
increasing (decreesing) failure rate assumption as well as plans based
on the mean life. A partial discussion of these plans was also pre-

sented by Gupta (1962b).
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2. Properties of Increasing (Decreasing) Failure Rate Distributions.

lLet X be a random variable with distribution F such that
F(x) =0 for x¢O. If F has density f then r(t) =
£f(t)/[1 - F(t)] 1is known as the failure rate function. Note that
r(t) = - -d—i- log (1 - F(t)] when a density exists. For this reason,
we say that F is IFR (DOFR) for incrvasing (decreasing) failure
rate 1f log (1 - F(t)] 1is concave where finite (convex on [0 , )).
These distributions have been studied by Barlow, Marshall, and Proschan
(1963) and Barlow and Marshall (1964). For convenience we summarize
same of the fundamental properties of these distributions.

An IFR (DFR) distribution ray have at most one point of dis-

continuity; namely, at the end of its right (left) hand interval of

support. The continuous part of an IFR (DOFR) distribution is

absolutely continuous. GSums of imdependent IFR random varisbles thenselves have

IFR distributions. This is not true for [FR random variables. If

F 18 & mixture of [DFR ‘’istributions, then it follows that F 1is IFR.
Many of the properties of the IFR (DFR) family follow from camparison
wvith the exponential distribution. This is no* surprising since it is

the boundary distribution between the two classes. If Ul < U2 < oo Un

are the order statistics fram an [FR /JFR) distribution F with mean

n
T8 1
W, then, E[U]>7T1 while E[U]JCu Z¢.-
() TGt
To obtain sampling plans based on percentiles we use the fact

Lt is decreasing (increasing)in t when F is

that (1 - F(t)]
; h

IFR (DFR). Let . denote the r°" mament of F . To obtain sampling

plans bvased on bounds on moments we use the inequalities for [FR dis-

tributions. Now we describe the relevant inequalities.



[ exp [ - t/%i/rl » t Sy

(2.1) 1-F(t)> < (r>1)
0 , > ulT
1 ,tgui/r

(2.2) 1-F(t)g < (r >0)
exp [ -wt] » D> ui/r

vhere w uniquely satisfies

t

P r-1 - wx
urerOx e

dx
and
)\r-ur/l“(ri-l).

If F 1is [FR, with rth moment My s then

p—

e [ - o], e gt
(2.3) l1-F(t)g <

re -ru,r , L2 r)\i/ T

F(r + 1)t7

From these bounds we can obtain the following bound on the q;t'h

quantile Cq in terms of |y assuming F 1s IFR. If q g1 - et ,

then
-3
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From the fact that )\:_'/ T {8 decreasing (increasing)in r when

F 1is IFR (DFR) we see that the coefficient of variation o/u,l g)l "
Q

The density and the failure rate are bounded at the origin from above

in terms of moments as follows:

fm)géii— 1,3=48,
1+J-l

when F 1is IFR.
Bounds on densities and failure rates were obtained by Barlow

and Marshall (1964]. If F is IFR and r > 1 then

1/r

ﬂt)s«t)suufln ,  ogt<u”
“r - ¢
and
. f-Sui/’
t-
r( )2{. , t>u::/r

t
vhen a satisfies p =T f =g Sy .
¢

If F is IFR with density f , then

-b
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Finally, we mention that maximum likelihood estimates of IFR (DFR)
distributions have been obtained by Grenander (1956) and Marshall and

Proschan (1964).

I



2. Nonparametric Sampling Plans

Let @ denote a parameter defined by a life distribution F .

For example, ¢ might denote the mean life or the 90th percentile,
\le would like to establish that, say ¢ 2'00 where Ou is some
specified value. A common practice in life testirg is to truncate
the experiment at a preassigned time, say t , and note the number of
failures (assuming that a failure is well-defined). One object of these
experiments is to set a confidence (lower) limit on the meen (quantile) life of the
units. If it is desired to establish a mean(quantile life, with a given proba-
bility of at least P  and if the number of failuces in the fixed time
does not exceed a given number ¢ , then the experimenter would like to
know the minimum sample size necessary to achieve his objective. in
following these sampling plans and the associated decision rule the
probability of rejecting a lot having a parameter @ ¢ OO is at least
equal to P' . Alternatively, the consumer's risk in adopting the sampling
plan (n, ¢, t , Ou) does not exceed 1 - P whatever o may be.
Mathematically, given a number Pl (0 € P‘ l), atime t and a value
OU of ¢ and an acceptance number c¢ , we want to find the smallest
positive integer n so that {f the observed number of failures in time
t does not exceed ¢ we can assert with confidence probability P'
that ¢ >4 .

It should be pointed out that these life tests can be termin .ted
prior to the time t with rejection as the result. In fact, the ter-
mination of the experiment car take place at the smaller of the two
)st

. t h
col) where t(c+1) is the time to the (c + 1

Also, the associated decision rule leads to an acceptance only at the

times t , t( failure.




end of time t and only if t(c+l) > t . Hence,

L(p) = P(Acceptance} = Pit(c+l) > t)

(- )
n. (& n-c-1l
(3.1) S ETDTE e, PO - P60 e (450)
e
e i D-i
s z ()P (1 - p
1=0
wvhere p = F(t;0) .
If p 1is & decreasing function of ©@ which is true, for instance,
if the density f£(t;0) {is TP2(Totally positive of order 2) in t and
@, then F(t;0) ¢ F('t;Oo) C=>08>6,. If p,= F(t;OO) , then {t

is clear from the theory of confidence intervals that the smallest
to satisfy
c
n i n=-1 *
i=0
is such that in adopting the above sampling plans with the associated
#*
decision rule, we can assert with probability P that O 2 00 provided
t(c4—l) >t
It should be noted that the above discussion assumes a knowledge
of F(t;Q) . Now, we consider the case where F(t;Q) 1s not explicitly
assumed; it is only assumed that we have bounds on F(t;Q) .
Suppose that p = F(t;0) > b(t;0) for t >0 where b(t;0) 1s
e known function. Suppose further that b(t;0) is decreasing in 0 .

Since L(p) is a decreasing function of p , we have

-T-
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(3.3) L(F(;0)) ¢ L(b(t;0)) < L(>(t;9,))

for @ ¢ OO . dence the sampling plans of the above type are obtained

by choosing the smallest positive integer n satisfying
»
(3.4) L(b(t;0,)) <1 -P

where ¢ , ¢ 0 and t are fixed
From (3.3) and (3.4) it follows that if the number of failures

during time t is less than or equal to ¢ , then we can make the

confidence statement that © > OU with confidence probability P' 3
Note that if b(t;®) 1s a sharp bound on F(t;e) , then it is

nondecreasing in t since F(t;9) 1is nondecreasing in t . If @

is the mean, then b(t;0) = b(t/e;1) since the mean ic a scale parameter

for positive random variables and b(t;®) 1is decreasing in o .

Now we give a few examples where the bound b(t;®) 1is known.

Example 1. (Markov's inequality). Let © denote the mean. Then

0 t <o

’

F(t;0) > b(t;0) = 1 Lo
-9/t y v 2@

is true for nonnegative random variables. Clcarly, b(t;@) 1is de-
creasing in © . A sampling plan based on Murkov's inequality would
afford protection over the class of all distributions on the positive

axis. However, the bound is quite wide.

-3-



Example 2. (Unimodal density)

If the density f 1is unimodal with unknown mode and first moment

¢ and if F(0-;@) = O, then from Barlow and Marshall (1963), ve have

0 , 0 tgo
F(4;0) 2b(t0) = < 2 -2, ogtg®
)
L l-% f-z’%

Clearly, b(t;9) 4is decreasing in © and the bound is a slight

improvement over Example 1.

Ecample 3. (PF2 density).
If log f(t;9) 1is concave where f£(t;0) > O, then f 1is called

a P'Fa(PdLya Frequency of Order 2) density. Most of the commonly used

densities have this property. If f has mear O , then

o, tge

F(t;0) > b(t;0) = (L

1 - sup (1 - e'bt)/(l - e-bm) , €26,
mt
e -bm
wvhere b {s determined by @ -f xbe Ax/(l - e ) .
C

The above bound is tabulated in a paper by Barlow and Marshall (1963).
A sampling plan based on this bound would afford less protection than

the IFR sampling plane since f PF implies that F 1s IFR but not

2

conversely.




Sampling Plans for the [FR and DFR Distributions

Now we discuss the ierivation of sampling plans for the I[FR and

DFR distributions for the following two cases:

[FR Distributione

Case (1) @ = M

In this case, from (2.2), we have

ir
t‘ f
4 v , SH,
(3.9) bltip ) = o s
1 e ’ t’>“
r
wvhere w uniquely satisfies
t
r-1 -wx
(3.0) w = r\j x e
Clearly b(t;ur) 18 a decreasing function of W - Hence the required

n tu ilnsure Mo > u: is given by the smallest positive integer which

satisfies

It should be noted that the sclution of (3.7) depends on the fact that
tr > u: . Of special importance is the case where r = 1 . In this
case (3.6) reduces to

(3.0) w¥ = 1 - e ™t



Hence, using [3.8) tc solve for w and then using (35.7) with

, O 0 -wt .
b.t;ul) = b(t,ul;l) =1-e , sampling plans to insure a specified
mean life have been computed and are given in Table 1. This table
also gives the actual confidence level attained.

Case (11) v = Cq , the qth percentile.

In this case

(3.9) b(t;Cq} = ‘L . q)t/Cq e ;

which is again decreasing in Cq and clearly depends only on q and
the ratio t,cq . Hence, to insure a specified ,uantile life (2 ,

we substitute from (3%.9) the value of b(t;cg) in the general equation
(3.4) and solve for the smallest n . Table II at the end of this
paper gives minimum sample sizes for the life testing situation where

)
v> 5

DFR Distributions

Case (1) o = T

In thie case, letting A = ur/r(r +1) , ve have

l/r
1-e Y , t< rli/r
(3.10] bt = ’
5.10) (L) = | 1 - r’)r(et)" ot ’\l-/r

1,r
and one can construct sampling plans for the cases wvhere t (r (X;)
11

and t > r(l;) . For the special case r =1, and t ¢ ug , 1t 1e

-11-



easy to check that the sampling plans based on the tounds {n (%.10)
reduce to the sampling plans for the neguative exponential with

ki = ul = ¢ . These tables have already teen given by sobel and
Tischendorf (17Yj) for t \; =

-

Case (i1) w = .
q
In this cace the bound is

t/C
l'(l'Q) E ’ t’SQ

(3.11) b(t;cq) = 1

To use the ponadriviai.bound, we require t ¢ C; . The sampling plans
are obtained as irn case (1i) of IFR distributions discussed atove.
Table (Il at the end of this paper gives these sampling plans for

'
A= t/Cq < 1.

oc Func§}32“§§9 the Producer's Risk

The OC function represents the probability of acceptance as a
fun~t.on of w . The sampling plans and the decis{on rule guarantee
that this probability is less than or equal to 1 - P' for all © ¢ OJ :

Suppuse there exists a function B(t;¥) suca that F(t;v) ¢ B(t;e]

for all t and all ¥ , then we have
(3.12) P(Acceptance} > L(B(t;w))

In order t. insure that the producer's risk will not exceed a

number a (v < a ¢ 1), wherever w > w , one needs to satisfy the

-12-



inequality
03.1%) L(B(t;@)) 2 L(B(t;e )) 21 - a

which will be satisfied if B(t;9) 1s decreasing in o . One may
use the inequality (3.13) to determine ¢ such that for fixed 01 ,
Y, and P. , the sampling plan and the acceptance rule will {nsure
that the producer's risk will not exceed a . Alternatively for
fixed n, t , u\) , ¢ and P‘ , one may want to know the minimum

value el of @ such that for al1 @ > © the probability of

l ’
acceptance » 1 - a.
Now we describe the evaluation of the OC function for the IFR

and DOFR distributions.

I[FR Distributions

Case (1) @ = M

, l/r
b B(t; =
3.14) ( ur) 1 . t>ul"r
’
r

1 r
Thus, for K. > M. 2t , we have
) . .
5.15)  L(F(tu ) > L(B(tk ) > L(B(t;u))
which gives a lower bound on the OC function. This bound is graphed

below.

-13-
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Case (11) w=1C
In this case
t/Cq
L- (1 -q) , vs
(3.16) Bt;Cq‘='
S| SR 2 S cq

und the lwer and upper bounds can be Jbtained similarly by usiug
b(t;Cq) and B(t;cq\ in the appropriate intervals.

Finally, it should be noted that sampling plans whict protect
the producer can be constructed for test time less than the c.al
us.ng the tound B(t;®) 1in the [FR -ase.

It (s clear from the bounds orn OC functious { r the FR case
that we have to test beyonu the mean 'quantile) 1life poal t protect
the c.nsumer whereus we carn protect the producer by testing for a

time less than the mea: (quantile) life goal.

DFR Distribut.ons

Case (1) w = .

In this case there is no nontrivial lower bound for the (C

-1l4-



furction L since there {8 no nontrivial upper bound on F . However,
there exists o nontriviel upper bound on the L function both for
ur <t and “f > t . This lower bound is obtained by using (3.1.)

in place of + {in the L function.

~

Cagse (i1 ¢ =
) Cq

Using the ' pper ' und

q . thq

l'(l'Q) q 1] tch

one can construct a lower bound on L for all ¢ .

Description of the Tebles and Some Illustrative Examples

Table 1. Tnis table gives the sample sizes necessary to estaclisn
that the true unknown mean pu of an IFR distribution is at least
O »

(. at a nominal confidence level P . The actual level attained

is also tabulated.

Illustration 1. OSuppose an experimenter wants to choose the sample

»*

slze corresponding to c¢c =2 , P = ./5 , A= t/uu = 1,0 , the. this
required n from Table 1 is erual to 5. For this sampling plan tne

actual probability level is equal to .7523.

Tatle II. This table gives the sample sizes necessary to establish
th
that the true unknown gq quantitle of an IFR distribution is at
{ *
least C; at a nominal confidence level P . The actual level

attained {s alsc tabulated.

Illustration 2. Assuming an IFR distribution and given c = 2 |

-15-




*
P -.75,A-t/(2-1.6,q-.2,vefindfrm'1‘ablenthntthe

required minimum sample size is 13. For this sampling plan the actual

probability attained if the decision rule accepts is equal to .7961.

Application to Drug Screening
Suppose a drug which is known to be non-toxic is administered

to patients sufforing from a specified cancer to determine its effective-
ness. The drug will be considered effective if, say 20% of the patients
respond to treatment after T weeks (T = 6, say). The treatment will
continue t weeks (t = 12, say) unless more than c patients respond
before this time--in which case the drug will be declared effective at

the end of the t ., wveeks. Let F(t) denote the probability of a

+1
response by time t and F(T) = p . Since we do not want to discard

a potentially useful drug, we set

c
P(rejecting drug |p> .20] = 2 (3)[r(t)]"[1 - F(¢))*" {a.
J=0
Now P(T)Z.ZO if and only if C.QOST where C.20 is the 20th
percentile. If we assume an IPFR distribution time; i.e., l—fL;%a-
increasing in t , then this problem is identical with case (ii)

considered under IFR sampling plans.

Illustration. We want to determine the number of patients to put on

trial to establish with 90 per cent confidence that, F(T) > .20; i.e.,

t
T

*
c=3,Q=.20 and P = .90 , wve find from Table II that n = 17

the response rate after T weeks is at least 20 per cent. If =2,

and the true confidence level is .91.

-16-



Table [II. This table gives the sample sizes ..c ecscrry to establish that
0
the true ' rhr = éth ~uantile of a ¥R distribution is at least Cq
*
at a nominal confidence lJevel P ., Here A = t/Ci < 1. Also, the

actual confidence attained is tabulated.

Approximations for Sample Sizes

The sample sizes necessary to establish a quantile for the IFR and
A
)

OFR distributions can be approximated as follows. If 1 - (1 - q is
small, then

Y. b -
(3.18) nd | cel,P ~ ] + 1

1-(-gq)

*

vhere Yool P' is the P percentage roint at a standardized gamma
b4

variable with shape parameter r = c + 1 or one-half times the P’ per-
~entage point of a 12 with (2c¢c + 2) degrees of freedom. This approxi-
mation was discussed by Gupta (1962a) where tables of yc+l,P' are also
given.

If p=1-4q 18 close to .5, then another approximation for n

is

N2 he 1% ngi)(l +~/l - (2c + 1)2/(2c + 1+ pzp')z) '
(3.19) n -~ L 201 - p) J + 1

»*
where 2,* 18 the P percentage point of the N (O , 1) random varia-

*
ble. For example, if q= .1, A=1,c=1,P = .75, then Yeel P °

2.09%6 and from (3.18) , n~ 27 . The exact answer from Table II is 27.

As an example of the second approximation, let A =1 , p=1-q= .9

4 y

-17-




»*
P = .75, ¢ =2 , then the approxima*e answer from ( 5../) 18 / winlch

coincides with the exact value.
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